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Transport properties of a two-dimensional ‘‘chiral’’ persistent random walk

H. Larralde
Instituto de Fisica, Laboratoria de Cuernavaca, UNAM Apartado Postal 48-3, Co´digo Postal 62251, Cuernavaca, Morelos, Mexico

~Received 23 April 1997!

The usual two-dimensional persistent random walk is generalized by introducing a clockwise~or counter-
clockwise! angular bias at each new step direction. This bias breaks the reflection symmetry of the problem,
giving the walker a tendency to ‘‘loop,’’ and gives rise to unusual transport properties. In particular, there is a
resonantlike enhancement of the diffusion constant as the parameters of the system are changed. Also, in
response to an external field, the looping tendency can resist or enhance the drift along the field and gives rise
to a drift transverse to the field. These results are obtained analytically, and, for completeness, compared with
Monte Carlo simulations of the walk.@S1063-651X~97!05310-5#

PACS number~s!: 05.40.1j
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INTRODUCTION

In this work I present a simple extension of the tw
dimensional~2D! persistent random walk@1# which gives
rise to rather surprising transport properties. Among thes
a resonantlike enhancement of the diffusion constant as
intrinsic parameters of the model are varied. The model
der consideration consists essentially of a 2D persistent
dom walk with a clockwise~or counterclockwise! angular
bias at each new step direction. This process can be tho
of as the simplest description for the motion of a charg
particle undergoing ‘‘soft’’ scattering by aligned magne
domains. The angular bias only breaks the reflection sym
try of the problem, as the system continues to be homo
neous and isotropic, which motivates the name ‘‘chiral’’ pe
sistent random walk. Thus, in this context, the chirality ref
to the tendency of the random walk to ‘‘loop’’ in one or th
other direction. This looping tendency gives rise to oth
phenomena in addition to the enhancement of the diffus
constant, for example, the presence of a field driving
particle induces also a drift in the transverse direction of
field, not unlike what happens in the Hall effect.

Some of the peculiar characteristics of the transport pr
erties of this walk, in particular the enhancement of the d
fusion constant, can be described in terms of the interp
between the two characteristic times present in the sys
similar to what happens in resonant phenomena. These c
acteristic times are the correlation time associated with
persistence of the random walk, which roughly speaking
the time in which the random walk forgets its initial dire
tion; and the looping time, i.e., the number of steps it wo
take a dispersionless random walk to close a loop. In sh
the looping tendency of the walk makes the persiste
length @2# a nonmonotonic function of the correlation tim
Indeed the largest persistence length is that for which
correlation time is roughly half the looping time; as f
longer correlation times, the looping tendency brings
walker back to its ‘‘starting’’ point.

In this paper I will focus on the simplest possible chir
persistent random walk, namely, the case in which the s
lengths are all equal. The generalization to the case in wh
the step lengths are also a random variable is straightforw
In Sec. I the master equation for the problem without a dr
561063-651X/97/56~5!/5004~5!/$10.00
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ing field is posed, from which an analytic expression for t
diffusion constant is obtained and discussed. Section I
devoted to the calculation of the linear response in the p
ence of an external field. Finally, Sec. III contains the co
cluding remarks and open questions of this problem.

I. DIFFUSION CONSTANT

The usual approach to describe persistence in rand
walks is via multistate random walks@1#; unfortunately in
dimensions larger than 1, the general situation requires
infinite state random walk even for constant step lengths
this vein I denoteP(x,y,nuu)dxdy the probability of arriv-
ing at a vicinitydxdy of position (x,y) aftern11 steps, the
n step having been chosen in the directionu ~whereu de-
notes the angle of the step measured from thex axis!. Thusu
works as the state label of the random walk. The probabi
of finding the random walk withindxdy of the point (x,y)
after n steps is given by

P~x,y,n!5E
2p

p

P~x,y,nuu!du. ~1!

The main ingredient in this problem will beP(Du), the
distribution of changes of direction between steps, which
the approach taken in this work serves as the state trans
distribution as well. It is clear that both the persistence a
the chirality of the random walk are consequences of
shape ofP(Du). If P(Du) is flat there is no correlation
between successive step directions and we obtain wha
known as a Pearson random walk@1#. On the other hand, if
P(Du)5d(Du), the random walker never changes directi
and we obtain ballistic motion in the direction of the fir
step. IfP(Du)5d(Du2b) the walker will follow a polygo-
nal trajectory. These polygons will eventually close or n
depending on whetherb is a rational or irrational fraction of
p. In any case they will certainly intersect themselves, a
form a ‘‘loop,’’ after '2p/b steps.

The evolution ofP(x,y,nuu) in terms ofP(Du) is given
by
5004 © 1997 The American Physical Society
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P~x,y,n11uu!5E
2p

p

P~x2L cosu,y2L sinu,nug!

3P~u2g!dg, ~2!

where L is the step size. The above equation merely
presses the fact that the probability of arriving withindxdy
of (x,y) at stepn11, then step having been chosen in th
directionu, is given by the probability of reaching the vicin
ity of (x2L cosu,y2L sinu) in the intermediate ‘‘state’’g
and changing to stateu, added over all possible intermedia
states.

Fourier transforming Eq.~2! in space one obtains

P~w,a,n11uu!5eiwL cos~u2a!

3E
2p

p

P~w,a,nug!P~u2g!dg, ~3!

where w and a are the polar representation of the vec
(wx ,wy) of the transform variables associated withx andy,
respectively. Finally, since the angular variables are cyc
we can expressP(w,a,nuu) and P(f) as Fourier series o
the form

P~w,a,nuu!5
1

2p (
l 52`

`

P~w,a,nu l !e2 i l u.

The coefficients of the series then satisfy

P~w,a,n11u l !5 (
k52`

`

~ i !kJk~wL!

3e2 ikaP~w,a,nuk1 l !P~k1 l !, ~4!

where P(w,a,nu l ) and P( l ) are the amplitudes of thel th
harmonic of P(w,a,nuu) and P(f), respectively, and
Jk(wL) is thekth-order Bessel function. The wisdom of th
above transformations might be doubtful, but they suffice
the purposes of this work.

While the exact solution of Eq.~4! appears to be very
hard to obtain, it can be used to evaluate the moments o
displacement. To do this recall that the coefficients of
expansion in powers ofw of the distributionP(w,a,n) @the
Fourier transform of the distribution in Eq.~1!# are directly
related to the moments ofP(x,y,n). The w dependence on
the right hand side of Eq.~4! is determined by the Besse
functions, thus, if one is interested in the second mom
one only needs to consider the termsk522,21,0,1,2 in the
infinite sum.

Writing

P~w,a,nu l !'q0~a,nu l !1 iwLq1~a,nu l !

2
w2L2

2
q2~a,nu l !..., ~5!

the second moment of the position of the walker can
expressed as

^r 2&n5L2@q2~0,nu0!1q2~p/2,nu0!#5^x2&n1^y2&n .
~6!
-
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Inserting Eq.~5! into Eq. ~4!, expanding the relevant Bess
functions@3#, and collecting powers ofw leads to the follow-
ing recursion relations for theqi ’s:

q0~a,n11u l !5P~ l !q0~a,nu l !, ~7a!

q1~a,n11u l !5P~ l !q1~a,nu l !

1 1
2 @e2 iaP~ l 11!q0~a,nu l 11!

1eiaP~ l 21!q0~a,nu l 21!#, ~7b!

and

q2~a,n11u l !5p~ l !@q2~a,nu l !1 1
2 q0~a,nu l !#

1 1
2 @e2 iaP~ l 11!q1~a,nu l 11!

1eiaP~ l 21!q1~a,nu l 21!#

1 1
4 @e22iaP~ l 12!q0~a,nu l 12!

1e2iaP~ l 22!q0~a,nu l 22!#. ~7c!

For simplicity, in what follows I will consider the distri-
bution P(Du) to be symmetric around an angleb, thus
P( l )5eilbp( l ) wherep( l )5p(2 l ).

The solution of the above recursion relations is straig
forward; it can be obtained using generating function te
niques subject to any consistent initial condition~as the long
time results will be independent of the initial condition!.
From the solution of Eqs.~7! and using Eq.~6!, the diffusion
constant turns out to be

D5 lim
n→`

^r 2&n

n
5L2S 12p2~1!

122p~1!cosb1p2~1! D . ~8!

The extreme behaviors of this result are consistent with w
one expects: ifP(Du)5d(Du2b), then p(1)51 and the
walker moves along a polygon, which results in no diffusi
transport~this is true as long asbÞ0!. On the other hand, if
P(Du) becomes flat, i.e.,P(Du)51/2p, thenp(1) vanishes
and I obtainD5L2, as expected for a Pearson random wa
@1#. If b50, the usual diffusion constant for 2D persiste
random walks is recovered@2,4–6#.

This result for the diffusion constant has the feature
being a nonmonotonic function ofp(1), having a maximum
at pmax(1)5(12sinb)/cosb. The diffusion constant at its
maximum value isDmax51/sinb. This effect is illustrated in
Fig. 1, where I show the diffusion constant obtained fro
Monte Carlo simulations of a random walker withP(Du)
given by

P~Du!5H 1

2a
if b2a,Du,b1a

0 otherwise
~9!

over the full range ofa for various values ofb, as well as the
analytical prediction for each case.

The hesitation to call resonance the enhancement of
diffusion constant occurring in this system stems from
fact that there is no external signal to which the parti
‘‘hooks onto,’’ as happens in most traditional stochas
resonance scenarios. Nevertheless, as mentioned above
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FIG. 1. Diffusion constant as a function ofa, the width of the distribution of changes of direction@see Eq.~9!#, for various values of the
angular biasb. The large points correspond to the diffusion constant obtained from Monte Carlo simulations of the process, the line
result of the calculation.
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enhancement does occur as a result of a particular rela
between the two characteristic times present in the sys
The qualitative explanation for this nonmonotonic behav
can be found by realizing that the step direction perform
random walk with constant driftb on the unit circle. The
characteristic function@1# of this process is precisel
eiblp( l ). Then the Fourier coefficients of the angular dist
bution function after n steps will be given byP( l ,n)
5einblpn( l ). Thus it is apparent that there are two ma
characteristic times: the ‘‘looping time’’t loop;2p/b, and
the correlation timetcorr;1/ln@1/up(1)u#. Now if the corre-
lation time is large,tcorr@t loop, the walker makes many
loops before ‘‘forgetting’’ its initial direction. Since the
net transport in each loop is small, the resulting proc
has a small diffusion coefficient. On the other hand,
tcorr!t loop, then the steps are essentially uncorrelat
giving rise to a Pearson random walk. But iftcorr;t loop/2
~as it turns out, for these definitions, the maximum diffusi
constant is attained whentcorr't loop/2p as b→0!, then
the walker makes ‘‘half’’ a loop before forgetting it
initial direction. The resulting process can then be thou
of as a random walker that gives uncorrelated ‘‘h
loop’’ steps. Since the loops can be quite large~for smallb!,
this results in a large enhancement of the diffus
constant.

II. RESPONSE TO AN EXTERNAL FIELD

There appears to be no unique way to introduce the ef
of an external field in this problem. For example, one way
introducing an external field would be to modifyP(Du) so
that steps with larger projections on the positivex axis are
chosen with a higher probability. While this is a reasona
way of biasing the motion in thex direction, it complicates
the formulation to no end. Instead, I have chosen a ph
cally motivated approach which is simpler but perha
on
m.
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s
f
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t
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ct
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e

i-
s

slightly artificial. In what follows, the action of the field wil
be considered as a small deterministic addition to thex com-
ponent of every step. The physical picture is that ea
change in direction is a scattering event, and that a w
external field acts on the particle between the scatterin
Thus the actual steps are calculated as the sum of the ve
chosen at the outcome of the scattering event and a s
constant vector in thex direction ~see Fig. 2!. The crucial
aspect of the effect of the applied field is that not only t
final position of each step is affected, but that the direct
from which that position is reached must also be affected

The master equation for the walk in the presence of t
field becomes

FIG. 2. The action of the external field on the random walk.
the ‘‘scattering point’’A the directionun is chosen. A small vector
eW in thex direction is then added to the step so the actual displa
ment is in theu(un) direction. At the next step~from point B! the
change of directionDu is taken with respect to the actual directio
of arrival u(un), and so on. In this way the field affects both th
final position of the steps and the direction from which these po
tions are reached.
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FIG. 3. Drift velocity parallel~a! and transverse~b! to the applied field as a function of the width of the distribution of changes
direction, for various values of the angular biasb. The large points correspond to the diffusion constant obtained from a Monte C
simulation of the process. The lines correspond to Eqs.~12a! and ~12b!, respectively.
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P~x,y,n11uu!5E
2p

p

P„x2L cosu2e,y

2L sinu,nug~u!…P~u2u!
dg

du
du,

~10!

wheree!L is the size of the vector added in thex direction
at each step. The interpretation of the quantities in Eq.~10! is
a bit tricky: P(x,y,nuu) is the probability of arriving in a
vicinity dxdy of position (x,y), the last step having bee
chosenin the directionu. This does not mean the the walk
arrives at (x,y) from directionu, but rather, that the direction
chosen in the previous ‘‘scattering’’ wasu and the walker
arrives at (x,y) from the direction resulting from the vecto
sum (L cosu,L sinu)1(e,0). In this context it proves conve
nient to return to the concept of state labels rather th
angles; thus the right hand side of Eq.~10! denotes the sum
mation over statesg which arrived at the position (x
2L cosu2e,y2L sinu) from the directionu(g) and scatter
into the ‘‘state’’ u. The factordg/du is a Jacobian required
for normalization.

Clearly there is little hope in carrying this calculation b
yond linear order ine. From symmetry considerations it i
obvious that the diffusion constant will be unaffected to li
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5008 56H. LARRALDE
ear order ine, so only the response of the average posit
remains to be computed. Once again performing a Fou
transform in space and expanding in a Fourier series,
obtains from Eq.~10! the recurrence relations for the coef
cients, correct to linear order ine,

P~w,a,n11u l !5 (
k52`

`

~ i !kJk~wL!e2 ikaP~k1 l !

3S P~w,a,nuk1 l !,2
e

2L
~k1 l !

3@P~w,a,nuk1 l 11!2P~w,a,nuk1 l

21!#1 iwe cosaP~w,a,nuk1 l ! D .

~11!

In order to evaluate the average position of the rand
walk one needs the coefficient of the linear term inw in the
expansion ofP(w,a,nu0), so one needs to keep only th
terms k50,61 of the infinite sum. The procedure follow
closely that for the determination of the diffusion constant
one defines the field induced velocitiesvx andvy by

vx[ lim
n→`

^x&n

n
, vy[ lim

n→`

^y&n

n
,

one obtains that

vx5
e

2 F 223p~1!cosb

122p~1!cosb1p2~1!G ~12a!

and

vy5
e

2 F p~1!sinb

122p~1!cosb1p2~1!G , ~12b!

where, for the sake of neatness, I have once again assu
that P(Du) is symmetrically centered about the angleb.
These velocities are shown in Fig. 3 for the case in wh
P(Du) is given by Eq.~9! and e50.01L. Several features
should be remarked. First of all, concerning the velocity p
allel to the field (vx), one sees that for small distributio
widths ~in this case, small values ofa!, the looping tendency
tends to ‘‘resist’’ transport. As the width increases this effe
is reversed and the looping tendency enhances the tran
in the direction of the field until a maximum is reache
beyond which the response falls to that of the Pearson
dom walk ~namely,vx5e!. Transport transverse to the fie
alk
n
er
ne

f

ed

h

r-

t
ort

,
n-

(vy), as expected on geometrical grounds, has its maxim
when the width is minimum, for at this point the loopin
tendency from which this component arises is maximum.
the width of P(Du) increases, the looping tendency ge
‘‘blurred’’ and transverse transport diminishes. It is wor
noting that the curves cross as the width increases, imply
that vy is not a monotonous function of the bias angle.

III. CONCLUSIONS AND PERSPECTIVES

In this work I have shown that the transport properties
2D persistent random walk are drastically altered by bre
ing the chiral symmetry of the system via the introduction
a tendency to ‘‘loop.’’ This can give rise to a resonantlik
behavior of the diffusion constant, as well as unexpec
responses to an applied field. While these results suffice
the description of the process in the Gaussian approxima
@1,5,6#, the question of the actual distribution appears to
very hard to answer. Indeed, even in the continuous limit a
in the absence of the angular bias, the Fokker-Planck eq
tion @7# for this process is related to the Mathieu equati
and appears to be intractable. Further, the equation for
marginal distribution of positions, independent of directio
cannot be obtained, for integration over the directions of
Fokker-Planck equation gives rise to an infinite hierarchy
equations involving the harmonics of the complete distrib
tion ~although it is a simple exercise to show that the fi
truncation of the hierarchy yields a two-dimensional teleg
pher’s equation!. Nevertheless, interesting and important i
formation should be analytically attainable, such as, for
ample, the correlations between direction and position.

Another interesting puzzle is the three-dimensional ch
random walk. This system differs from the present one
that it must be posed as a third-order Markov process; tha
the direction of each step depends on the directions of
two previous steps~and thus on the previous three position!.
This makes dealing with the three-dimensional problem
tremely hard. Clearly, enhancement of the diffusion const
as well as transverse transport are also expected in this c
and are worth pursuing, for it is in three dimensions whe
these models find most of their applications@1,2,5,6#.
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