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Transport properties of a two-dimensional “chiral” persistent random walk
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The usual two-dimensional persistent random walk is generalized by introducing a clo¢kwisaunter-
clockwise angular bias at each new step direction. This bias breaks the reflection symmetry of the problem,
giving the walker a tendency to “loop,” and gives rise to unusual transport properties. In particular, there is a
resonantlike enhancement of the diffusion constant as the parameters of the system are changed. Also, in
response to an external field, the looping tendency can resist or enhance the drift along the field and gives rise
to a drift transverse to the field. These results are obtained analytically, and, for completeness, compared with
Monte Carlo simulations of the walkS1063-651X97)05310-5

PACS numbdrs): 05.40:+]

INTRODUCTION ing field is posed, from which an analytic expression for the
diffusion constant is obtained and discussed. Section Il is
In this work | present a simple extension of the two- devoted to the calculation of the linear response in the pres-
dimensional(2D) persistent random walkl] which gives ence of an external field. Finally, Sec. Il contains the con-
rise to rather surprising transport properties. Among these i§luding remarks and open questions of this problem.
a resonantlike enhancement of the diffusion constant as the
intrinsic parameters of the model are varied. The model un-
der consideration consists essentially of a 2D persistent ran- I. DIFFUSION CONSTANT
bias at each new step direction. This process can be thogpy, 1" USUal approach to descibe persistence in random
of as the simplest description for the motion of a chargedc’jv."’llks IS via multistate random walkdJ; gnforltunately_ln
particle undergoing “soft” scattering by aligned magnetic . imensions larger than 1, the general situation requires an
. . . infinite state random walk even for constant step lengths. In
domains. The angular bias only breaks the reflection symm

try of the problem, as the system continues to be homogZ[-hIS vein | denoteP(x,y,n|¢)dxdy the probability of arriv-

neous and isotropic, which motivates the name “chiral” per—Ing at a vicinitydxdy of position ,y) aftern-+1 steps, the

sistent random walk. Thus, in this context, the chirality refers’ step having been chosen in the directibriwhere ¢ de-

to the tendency of the random walk to “loop” in one or the hotes the angle of the step measured fromdbeis). Thusé

other direction. This looping tendency gives rise to OtherWorks as the state label of the random walk. The probability

phenomena in addition to the enhancement of the diffusiorcl)]c finding the_ rar]dom walk withinixdy of the point &.y)
constant, for example, the presence of a field driving theaftern steps is given by
particle induces also a drift in the transverse direction of the
field, not unlike what happens in the Hall effect.
Some of the peculiar characteristics of the transport prop- P(X,y,n)= f
erties of this walk, in particular the enhancement of the dif-
fusion constant, can be described in terms of the interplay
between the two characteristic times present in the system,
similar to what happens in resonant phenomena. These char- The main ingredient in this problem will bB(A 6), the
acteristic times are the correlation time associated with théistribution of changes of direction between steps, which in
persistence of the random walk, which roughly speaking ighe approach taken in this work serves as the state transition
the time in which the random walk forgets its initial direc- distribution as well. It is clear that both the persistence and
tion; and the looping time, i.e., the number of steps it wouldthe chirality of the random walk are consequences of the
take a dispersionless random walk to close a loop. In shorghape ofP(A#). If P(A6) is flat there is no correlation
the looping tendency of the walk makes the persistencbetween successive step directions and we obtain what is
length[2] a nonmonotonic function of the correlation time. known as a Pearson random w&lK. On the other hand, if
Indeed the largest persistence length is that for which th&(A6)=6(A#6), the random walker never changes direction
correlation time is roughly half the looping time; as for and we obtain ballistic motion in the direction of the first
longer correlation times, the looping tendency brings thestep. IfP(A 8) = 6(A 6—Db) the walker will follow a polygo-
walker back to its “starting” point. nal trajectory. These polygons will eventually close or not,
In this paper | will focus on the simplest possible chiral depending on whethdr is a rational or irrational fraction of
persistent random walk, namely, the case in which the step. In any case they will certainly intersect themselves, and
lengths are all equal. The generalization to the case in whicform a “loop,” after ~2/b steps.
the step lengths are also a random variable is straightforward. The evolution ofP(x,y,n|6) in terms of P(A 6) is given
In Sec. | the master equation for the problem without a driv-by

m

P(x,y,n|6)dé. D

1063-651X/97/565)/50045)/$10.00 56 5004 © 1997 The American Physical Society



56 TRANSPORT PROPERTIES OF A TWO-DIMENSIONA . . 5005

w Inserting Eq.(5) into Eq. (4), expanding the relevant Bessel
P(x,y,n+1[6)= f P(x—L cost,y—L sind,n|y) functions[3], and collecting powers of leads to the follow-
-7 ing recursion relations for the;’s:
>< —

PLomdy @ ol -+ 111 =P(ha(anll), 72
where L is the step size. The above equation merely ex-
presses the fact that the probability of arriving witlirdy di(a,n+1[)=P()q.(a,nll)
of (x,_y) at _stepn+ 1, then step hg}/ing been c;hosen in 'Fhe +1[e 1 eP(l+1)qq(e,n|l +1)
direction 6, is given by the probability of reaching the vicin- '
ity of (x—L cosf,y—L sind) in the intermediate “state”y +e"*P(I-1)qo(a,n|l—1)], (7b)
and changing to staté added over all possible intermediate
states. and

Fourier transforming Eqg(2) in space one obtains
9 Eq2) in sp Aa( @+ 1|1 =p()[Galer,n1) + 3o an])]

_ WL cog6—a) i
P(w,a,n+1|§) =g +3[e "*P(I+1)qy(a,n|l+1)

xf_ﬂ P(w,a,n|y)P(6—7y)dy, (3) +e'*P(1-1)qy(a,n[l-1)]
" + e 2oP(1+2)qq(a,n|l+2)

wherew and « are the polar representation of the vector +e2i”P(| —2)qe(a.n|l —2)]. (70

(wy ,wy) of the transform variables associated witlandy,
respectively. Finally, since the angular variables are cyclic, For simplicity, in what follows | will consider the distri-
we can expres®(w,a,n|¢) and P(¢) as Fourier series of ption P(A¢) to be symmetric around an angke thus

the form P(1)=€"p(1) wherep(l)=p(—1).
. The solution of the above recursion relations is straight-
- —ilg forward; it can be obtained using generating function tech-
P(w,a.n|6) 2w |=§;m P(w,a,n[l)e™"". niques subject to any consistent initial conditi@s the long

time results will be independent of the initial conditjon
The coefficients of the series then satisfy From the solution of Eq47) and using Eq(6), the diffusion
. constant turns out to be

)3 (wL 2
2 ()M(wL) - (rn)n:L2

x e kep(w,a,n|k+1)P(k+1), (4) A

P(W,a,n+1||)=k 1-p?(1)

1—2p(1)coh+p?(1)/

®

. The extreme behaviors of this result are consistent with what
where R(w,a,n|l) and P(l) are the amphtudeg of theh  jhe expects: ifP(A6)=6(A6—b), thenp(1)=1 and the
harmonic of P(w,a,n|0) and P(¢), respectively, and aiker moves along a polygon, which results in no diffusive
Ji(wL) is thekth-order Bessel function. The wisdom of the transport(this is true as long as#0). On the other hand, if
above transformations might be doubtful, but they suffice forp(A 6) becomes flat, i.eP(A 6) = 1/2, thenp(1) vanishes
the purposes of this work. and | obtainD=L2, as expected for a Pearson random walk

While the exact solution of Eq4) appears to be Very 1] |t h=0, the usual diffusion constant for 2D persistent
hard to obtain, it can be used to evaluate the moments of thr’%mdom walks is recoverd@,4—6.

displacement. To do this recall that the coefficients of the This result for the diffusion constant has the feature of

expansion in powers of of the distributionP(w, a,n) [the being a honmonotonic function @i(1), having a maximum

Fourier transform of the distribution in qu)] are directly at p ax(l):(l_sinb)/cog) The diffusion constant at its
m .

related to the moments &(x,y,n). Thew dependence on ,yimum value iD= 1/sirb. This effect is illustrated in

the right hand side of Ed4) is determined by the Bessel gy 1 \yhere | show the diffusion constant obtained from

functions, thus, if one is interested in the second MOMeNty;nte Carlo simulations of a random walker WIBr(A 6)
one only needs to consider the terkns —2,—1,0,1,2 in the

infinite sum.
Writing 1
— if b—a<A6<b+a
P(W, a,n[1)~Go(a,n|l) +iwLgy(a,n|l) P(Ag)=1 2a . ©
0 otherwise
w22
5 de(an(l)..., (5)  over the full range o# for various values ob, as well as the
analytical prediction for each case.

the second moment of the position of the walker can be The hesitation to call resonance the enhancement of the

expressed as diffusion constant occurring in this system stems from the
fact that there is no external signal to which the particle
(r3)n=L2[q,(0,n|0) + qo( 7/2,0|0) 1= (X3 n+ {y*)n. “hooks onto,” as happens in most traditional stochastic

(6) resonance scenarios. Nevertheless, as mentioned above, the
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FIG. 1. Diffusion constant as a function af the width of the distribution of changes of directi@ee Eq(9)], for various values of the
angular bias. The large points correspond to the diffusion constant obtained from Monte Carlo simulations of the process, the lines to the
result of the calculation.

enhancement does occur as a result of a particular relatioslightly artificial. In what follows, the action of the field will
between the two characteristic times present in the systenbe considered as a small deterministic addition toxtieem-

The qualitative explanation for this nonmonotonic behaviorponent of every step. The physical picture is that each
can be found by realizing that the step direction performs &hange in direction is a scattering event, and that a weak
random walk with constant drifb on the unit circle. The external field acts on the particle between the scatterings.
characteristic function[1] of this process is precisely Thus the actual steps are calculated as the sum of the vector
e®'p(1). Then the Fourier coefficients of the angular distri- chosen at the outcome of the scattering event and a small
bution function aftern steps will be given byP(l,n)  constant vector in the& direction (see Fig. 2 The crucial
=¢'"'p"(1). Thus it is apparent that there are two mainaspect of the effect of the applied field is that not only the
characteristic times: the “looping time'ri,,,~27/b, and  final position of each step is affected, but that the direction
the correlation timerg,,~1/IN[1/|p(1)|]. Now if the corre-  from which that position is reached must also be affected.
lation time is large, o> Tioop, the walker makes many The master equation for the walk in the presence of this
loops before “forgetting” its initial direction. Since the field becomes

net transport in each loop is small, the resulting process
has a small diffusion coefficient. On the other hand, if
Teor<Tioop: then the steps are essentially uncorrelated,
giving rise to a Pearson random walk. But7if,,~ 7io05/2

(as it turns out, for these definitions, the maximum diffusion
constant is attained whemc,~ 75027 as b—0), then
the walker makes “half” a loop before forgetting its
initial direction. The resulting process can then be thought
of as a random walker that gives uncorrelated “half
loop” steps. Since the loops can be quite latfpr smallb),

this results in a large enhancement of the diffusion
constant.

Il. RESPONSE TO AN EXTERNAL FIELD

There appea_\rs t(_) be_no unique way to introduce the effect FIG. 2. The action of the external field on the random walk. At
of an external field in this problem. For example, one way Ofy,e «scattering point’A the directiond, is chosen. A small vector
introducing an external field would be to modiB(A6) SO ¢ n thex direction is then added to the step so the actual displace-
that steps with larger projections on the positivexis are  ment is in theu(6,) direction. At the next stegfrom point B) the
chosen with a higher probability. While this is a reasonabléchange of directiom 6 is taken with respect to the actual direction
way of biasing the motion in the direction, it complicates of arrival u(6,), and so on. In this way the field affects both the
the formulation to no end. Instead, | have chosen a physifinal position of the steps and the direction from which these posi-
cally motivated approach which is simpler but perhapstions are reached.
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FIG. 3. Drift velocity parallel(a) and transverséb) to the applied field as a function of the width of the distribution of changes of
direction, for various values of the angular bias The large points correspond to the diffusion constant obtained from a Monte Carlo
simulation of the process. The lines correspond to Etgg and(12h), respectively.

w arrives at k,y) from direction#, but rather, that the direction
P(x—L cosf—e,y chosen in the previous “scattering” wagand the walker
i arrives at &,y) from the direction resulting from the vector
dy sum (L cosd,L sind)+(€,0). In this context it proves conve-
—L sing,n|y(u))P(6—u) qu du, nient to return to the concept of state labels rather than
u angles; thus the right hand side of Efj0) denotes the sum-
(10) mation over statesy which arrived at the position x(
—L cosf—e€y—L sing) from the directionu(y) and scatter
wheree<L is the size of the vector added in tkalirection into the “state” 6. The factordy/du is a Jacobian required
at each step. The interpretation of the quantities in(E@).is  for normalization.
a bit tricky: P(x,y,n|#) is the probability of arriving in a Clearly there is little hope in carrying this calculation be-
vicinity dxdy of position ,y), the last step having been yond linear order ine. From symmetry considerations it is
chosenin the directiond. This does not mean the the walker obvious that the diffusion constant will be unaffected to lin-

P(x,y,n+l|0)=f
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ear order ine, so only the response of the average position(v,), as expected on geometrical grounds, has its maximum
remains to be computed. Once again performing a Fouriewhen the width is minimum, for at this point the looping
transform in space and expanding in a Fourier series, ongndency from which this component arises is maximum. As
obtains from Eq(10) the recurrence relations for the coeffi- the width of P(A#) increases, the looping tendency gets
cients, correct to linear order ig “blurred” and transverse transport diminishes. It is worth
noting that the curves cross as the width increases, implying

Pw,an+i= S (DK (wl)e *ap(k+1) thatv, is not a monotonous function of the bias angle.
k=—o

IIl. CONCLUSIONS AND PERSPECTIVES

€
x| P(w,a,n|k+1),— =— (k+1) ) .
2L In this work | have shown that the transport properties of

2D persistent random walk are drastically altered by break-
ing the chiral symmetry of the system via the introduction of
a tendency to “loop.” This can give rise to a resonantlike
. behavior of the diffusion constant, as well as unexpected
responses to an applied field. While these results suffice for
(11)  the description of the process in the Gaussian approximation
1,5,6], the question of the actual distribution appears to be
very hard to answer. Indeed, even in the continuous limit and
in the absence of the angular bias, the Fokker-Planck equa-
tion [7] for this process is related to the Mathieu equation
and appears to be intractable. Further, the equation for the
marginal distribution of positions, independent of direction,

X[P(w,a,n|k+14+1)—P(w,a,n|k+]

—1)]+iwe cosaP(w,a,n|k+1)

In order to evaluate the average position of the rando
walk one needs the coefficient of the linear termwirin the
expansion ofP(w,a,n|0), so one needs to keep only the
termsk=0,=1 of the infinite sum. The procedure follows
closely that for the determination of the diffusion constant. If

one defines the field induced velocitieg andv,, by cannot be obtained, for integration over the directions of the
(x)n (Yon Fokker-Planck equation gives rise to an infinite hierarchy of
vy= lim . vy=1Iim , equations involving the harmonics of the complete distribu-
now N noo N tion (although it is a simple exercise to show that the first
_ truncation of the hierarchy yields a two-dimensional telegra-
one obtains that pher's equation Nevertheless, interesting and important in-
c 2-3p(1)codh formation should b_e analytically at_tainz_ible, such as, for ex-
V=% 5 } (123 ample, the correlations between direction and position.
2 [1-2p(1)cos+p=(1) Another interesting puzzle is the three-dimensional chiral
and random walk. This system differs from the present one in
that it must be posed as a third-order Markov process; that is,
€ p(1)sinb the dire(_:tion of each step depends on the direction_s_ of the
vy=5 |1 2p(1)cod+ pi(D)|’ (12b  two previous stepgand thus on the previous three positipns

This makes dealing with the three-dimensional problem ex-

where, for the sake of neatness, | have once again assumi§mely hard. Clearly, enhancement of the diffusion constant
that P(A6) is symmetrically centered about the andle @S well as transverse; tranqurt. are also expecteq in this case,
These velocities are shown in Fig. 3 for the case in whicfnd are worth pursuing, for it is in three dimensions where
P(A#6) is given by Eq.(9) and e=0.01L. Several features these models find most of their applicatidis2,5,.

should be remarked. First of all, concerning the velocity par-
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